PII: S0040-4039(97)00469-3 ## Synthesis of [2-(Dimethylphosphino)ethyl]bis(trifluoromethyl)phosphine, (CH₂)₂PCH₂CH₂P(CF₄)₂ ## Leslie D. Field* and Matthew P. Wilkinson School of Chemistry, University of Sydney, Sydney N.S.W. 2006 Australia Abstract. The ethylene-bridged bisphosphine, [2-(dimethylphosphino)ethyl]bis(trifluoromethyl)phosphine, [(CH₁)₂PCH₂CH₂P(CF₃)₂], was synthesised in four steps from the unsymmetrical bisphosphine (CH₃)₂PCH₂CH₂PH₂, using a new trifluoromethylation procedure employing CF₃Br and hexaethylphosphorus triamide © 1997 Elsevier Science Ltd. Bisphosphine ligands of the form R₂PCH₂CH₂PR₂ (R = alkyl and aryl) have been used extensively as ligands for organometallic complexes.¹⁻⁵ In recent years, there has been increasing interest in bisphosphine ligands containing fluorinated substituents (R₂PCH₂CH₂PR₂; R = perfluoroalkyl and perfluoroaryl).⁶⁻⁹ Even from the limited number of studies so far, it is apparent that the incorporation of fluoroalkyl groups into bisphosphine ligands has a dramatic influence on the reactivity of organometallic complexes, compared to their non-fluorinated analogues.¹⁰ The synthesis of unsymmetrical bisphosphines containing both fluorinated and non-fluorinated groups allows greater control over the properties of organometallic complexes incorporating these ligands. Few mixed bisphosphines of the form $R_2PCH_2CH_2PR'_2$ are known. Examples include $(C_6H_5)_2PCH_2CH_2P(CH_3)_2$, $H_2PCH_2CH_2P(CH_3)_2$, C_6H_5 , $PCH_2CH_2P(CF_3)_2$, and $(C_6H_5)_2PCH_2CH_2P(C_6F_5)_2$. In this paper we report the synthesis of a new unsymmetrical bisphosphine, $(CH_3)_2PCH_2CH_2P(CF_3)_2$, (1), containing phosphine donors with both alkyl and perfluoroalkyl substituents. In a previous paper, we reported an improved synthesis of dfmpe, $(CF_3)_2PCH_2CH_2P(CF_3)_2$, (2), by trifluoromethylation of $Cl_2PCH_2CH_2PCl_2$ using CF_3 Br and hexaethylphosphorus triamide (hepa). This basic approach for trifluoromethylation at phosphorus was employed for the synthesis of (1). $$H_3C$$ P CF_3 H_3C (1) $$F_3C$$ P CF_3 F_3C (2) CF_3 The synthesis of (2-(dimethylphosphino)ethyl)phosphine, (CH₃)₂PCH₂CH₂PH₂, (3), ¹² provided a convenient starting point for the synthesis of (CH₃)₂PCH₂CH₂P(CF₃)₂. The dimethylphosphino group of (3) was protected by selective sulfurisation with sulfur powder at room temperature for 30 minutes to give (CH₃)₂P(S)CH₂CH₂PH₂, (4). ¹⁶ Sulfurisation at the tertiary centre is significantly faster than at the primary phosphine group and the unwanted doubly sulfurised product, $(CH_3)_2P(S)CH_2CH_2P(S)H_2$, was formed only if the sulfurisation was allowed to proceed for an extended time. The primary phosphine terminus of (4) was converted to the dichloride by treatment with triphosgene [(Cl₃CO)₂CO]^{17,18} to give (CH₃)₂P(S)CH₂CH₂PCl₂, (5), in good yield (70%).¹⁹ Initial protection of the more reactive tertiary phosphine centre was essential to ensure chlorination only at the -PH₂ group. The alkylphosphine dichloride, (5), was treated with ten equivalents of trifluoromethyl bromide and four equivalents of hexaethylphosphorus triamide in dichloromethane at low temperature, to give (CH₃)₂P(S)CH₂CH₂P(CF₃)₂, (6), as an air-stable, white powder (Scheme 1).²⁰ Treatment of (6) with excess tri-*n*-butylphosphine at 200°C for 1 h effected desulfurisation to give the desired product, (1), which was isolated by distillation under high vacuum as a colourless, air-sensitive liquid.²¹ All of the intermediate compounds in the synthesis of (CH₃)₂PCH₂CH₂P(CF₃)₂, (1), were fully characterised by multinuclear NMR spectroscopy. All compounds have characteristic ³¹P NMR signatures which permit the progress of each step in the reaction sequence to be monitored conveniently. ³¹P{¹H} and ¹⁹F{¹H} NMR data for the key intermediates in the synthetic sequence are listed in Table 1. | Table 1 | ³¹P⋅ | ('H) | and " | F{ | 'H | NMR | data of | uns | ymmetrical | bisphosphines | |---------|------|------|-------|----|----|-----|---------|-----|------------|---------------| |---------|------|------|-------|----|----|-----|---------|-----|------------|---------------| | Compound | δ ³¹ P (ppm) ^a | $^{3}J_{\text{P-P}}$ (Hz) | δ ¹⁹ F (ppm) ^d | | |--|---|---------------------------|---|--| | (CH ₃) ₂ PCH ₂ CH ₂ PH ₂ (3) | -49.7, -130.8 ^b | 15 | - | | | (CH3)2P(S)CH2CH2PH2 (4) | 34.1, -129.7 ^b | 17 | - | | | (CH3)2P(S)CH2CH2PCl2 (5) | $193.2, 36.2^{b}$ | 22 | - | | | $(CH_3)_2P(S)CH_2CH_2P(CF_3)_2$ (6) | $37.9, 1.6^{c}$ | 46 | -50.8¢ | | | $(CH_3)_2PCH_2CH_2P(CF_3)_2$ (1) | $2.1, -46.8^{b}$ | 38 | -50.8f | | a referenced to external neat trimethyl phosphite at δ 140.5 ppm; b C₆D₆ solution at 162.0 MHz; c CDCl₃ solution at 162.0 MHz; d referenced to external neat hexafluorobenzene at δ -163.0 ppm; e CDCl₃ solution at 376.4 MHz, ${}^2J_{P,F} = 70$ Hz; $f C_6D_6$ solution at 376.4 MHz, ${}^2J_{P,F} = 67$ Hz The use of the P-Cl \rightarrow P-CF₃ transformation in the synthesis of (CH₃)₂PCH₂CH₂P(CF₃)₂, (1), demonstrates the applicability of the reagent combination hepa/CF₃Br to the synthesis of trifluoromethylated phosphines, increasing the range of substituents available to tune the electronic properties of phosphine ligands. An investigation of metal complexes of (1) is underway. **Acknowledgments.** We gratefully acknowledge financial support from the Australian Research Council and the Australian Government for an Australian Postgraduate Research Award (MPW). ## REFERENCES AND NOTES. - For early references, see for example (a) English, A.D.; Ittel, S.D; Jesson, J.P.; Tolman, C.A. J. Am. Chem. Soc. 1978, 100, 4080. (b) English, A.D.; Ittel, S.D; Jesson, J.P.; Tolman, C.A. J. Am. Chem. Soc. 1979, 101, 7577. (c) English, A.D.; Ittel, S.D; Jesson, J.P.; Tolman, C.A. J. Am. Chem. Soc. 1979, 101, 1742. (d) Ittel, S.D.; Tolman, C.A.; Krusic, P.J.; English, A.D.; Jesson, J.P. Inorg. Chem. 1978, 17, 3432. - 2. Baker, M.V.; Field, L.D. Organometallics 1986, 5, 821. - 3. Baker, M.V.; Field, L.D. J. Am. Chem. Soc. 1987, 109, 2825. - 4. Baker, M.V.; Field, L.D. J. Am. Chem. Soc. 1986, 108, 7433. - 5. Jones, W.D.; Kosar, W.P. J. Am. Chem. Soc. 1986, 108, 393. - 6. Cook, R.L.; Morse, J.G. Inorg. Chem. 1982, 21, 4103. - See for example Schnabel, R.C; Roddick, D.M. ACS Symposium Series, 1994, 55, 421; and references therein. - 8. Ernst, M.F.; Roddick, D.M. Inorg. Chem. 1989, 28, 1624. - 9. The bisphosphine dfmpe, (2), was first synthesised by L.R. Grant, PhD Dissertation, University of Southern California Libraries, 1960, cited in A.B. Burg, *Accounts Chem. Res.*, 1969, 2, 353. - See for example (a) Schnabel, R.C; Carroll, P.S.; Roddick, D.M. Organometallics 1996, 15, 655. (b) Schnabel, R.C; Roddick, D.M. Inorg. Chem. 1993, 32, 1513. (c) Bennett, B.L; Birnbaum, J.; Roddick, D.M. Polyhedron 1995, 14, 187. (d) Schnabel, R.C; Roddick, D.M. Organometallics 1993, 12, 704. (e) Keady, M.S.; Koola, J.D.; Ontko, A.C.; Merwin, R.K.; Roddick, D.M. Organometallics 1992, 11, 3417. (f) Koola, J.D.; Roddick, D.M. J. Am. Chem. Soc. 1991, 113, 1450. - 11. King, R.B.; Cloyd, Jr., J.C.; Hendrick, P.K. J. Am. Chem. Soc. 1973, 95, 5083. - 12. Bampos, N.; Field, L.D.; Messerle, B.A.; Smernik, R.J. Inorg. Chem. 1993, 32, 4084. - 13. Manojlovic-Muir, Lj.; Millington, D.; Muir, K.W.; Sharp, D.W.A.; Hill, W.E.; Quagliano, J.V.; Vallerino, L.M. *J Chem. Soc. Chem. Commun.* **1974**, 999. - 14. Macleod, I.; Manojlovic-Muir, Lj.; Millington, D.; Muir, K.W.; Sharp, D.W.A.; Walker, R. *J. Organomet. Chem.* 1975, 97, C7. - 15. Field, L.D.; Wilkinson, M.P. Tetrahedron Lett. 1992, 33, 7601. - 16. A solution of (CH₃)₂PCH₂CH₂PH₂, (3), (7.8 g, 0.064 mol) in ether (400 ml) was added to a stirred suspension of sulfur powder (3.0 g, 0.094 mol) in ether (100 ml) at room temperature. The mixture was stirred for 30 min, filtered, and the ether was removed under reduced pressure to give $(CH_3)_2P(S)CH_2CH_2PH_2$, (4), as a white powder (8.7 g, 88%). $^{31}P\{^{1}H\}$ NMR (C_6D_6) : δ 34.1 (1P, d, $(CH_3)_2P(S)$ -), -129.7 (1P, d, -PH₂, $^{3}J_{P,P}$ = 17 Hz, $^{1}J_{P,H}$ = 192 Hz) ppm. ^{1}H NMR (C_6D_6) : δ 1.22 (6H, d, $(CH_3)_2P(S)$ -, $^{2}J_{P,H}$ = 12.7 Hz), 1.70-1.52 (4H, m, -PCH₂CH₂P-), 2.78 (2H, d, -PH₂, $^{1}J_{P,H}$ = 192 Hz) ppm. $^{13}C\{^{1}H\}$ NMR (C_6D_6) : δ 38.7 (1C, dd, $(CH_3)_2P(S)CH_2$ -, $^{1}J_{C,P}$ = 49.2 Hz, $^{2}J_{C,P}$ = 4.2 Hz), 21.0 (2C, d, $(CH_3)_2P(S)$ -, $^{1}J_{C,P}$ = 53.4 Hz), 7.7 (1C, dd, -CH₂PH₂, $^{1}J_{C,P}$ = 11.0 Hz, $^{2}J_{C,P}$ = 5.1 Hz) ppm. If the reaction mixture is left for an extended period (> 4 hrs) $(CH_3)_2P(S)CH_2CH_2P(S)H_2$ is the major product $^{31}P\{^{1}H\}$ NMR δ 38.0 (1P, d, $(CH_3)_2P(S)$ -, $^{3}J_{P,P}$ = 58 Hz), -12.2 (1P, d, -P(S)H₃, $^{1}J_{P,H}$ = 453 Hz) ppm. - 17. Fild, M.; Schmultzer, R. Organic Phosphorus Compounds 1972, Vol. 4, p. 88. - 18. Triphosgene is a convenient substitute for phosgene : see for example Cotaca, L.; Delogu, P.; Nardelli, A.; Sunjic, V. *Synthesis*, **1996**, 553 and references therein. - 19. A solution of triphosgene (2.6 g, 8.7 mmol) in toluene (50 ml) was added dropwise to a solution of $(CH_3)_2P(S)CH_2CH_2PH_2$, (4), (2.0 g, 13 mmol) in toluene (100 ml). The reaction mixture was stirred for 4 h and the solvent was removed under reduced pressure. The residue was washed with hexane $(2 \times 10 \text{ ml})$ to give $(CH_3)_2P(S)CH_2CH_2PCl_2$, (5), as a white powder (2.0 g, 70 %). $^{31}P\{^1H\}$ NMR $(C_6D_6): \delta$ 193.2 (1P, d, -PCl₂), 36.2 (1P, d, $(CH_3)_2P(S)$ -), $^{3}J_{P,P} = 22 \text{ Hz}$) ppm. ^{1}H NMR $(C_6D_6): \delta$ 2.54-2.43 (2H, m, -CH₂PCl₂), 1.96-1.87 (2H, m, $(CH_3)_2P(S)CH_2$ -), 1.32 (6H, d, $(CH_3)_2P(S)$ -, $^{2}J_{P,H} = 12.7 \text{ Hz}$) ppm. $^{13}C\{^{1}H\}$ NMR $(C_6D_6): \delta$ 35.4 (1C, dd, $(CH_3)_2P(S)CH_2$ -, $^{1}J_{C,P} = 49 \text{ Hz}$, $^{2}J_{C,P} = 4 \text{ Hz}$), 27.8 (1C, dd, -CH₂PCl₂, $^{1}J_{C,P} = 51 \text{ Hz}$, $^{2}J_{C,P} = 10 \text{ Hz}$), 20.5 (2C, d, $(CH_3)_2P(S)$ -, $^{1}J_{C,P} = 55 \text{ Hz}$) ppm. - 20. Trifluoromethyl bromide (6.8 g, 46 mmol) was condensed into a flask and allowed to evaporate into a three-necked flask cooled to liquid nitrogen temperature and fitted with a dry-ice condenser. A solution of (CH₃)₂P(S)CH₂CH₂PCl₂, (5), (0.80 g, 3.6 mmol) in dichloromethane (20 ml) was added and the reaction mixture was allowed to warm to -60°C. A solution of hexaethylphosphorus triamide (3.4 g, 14 mmol) in dichloromethane (20 ml) was added over a period of 1 h while the temperature was maintained between -60°C and -55°C. The reaction mixture was allowed to warm slowly to room temperature and was stirred overnight. The crude reaction mixture was eluted through flash silica with dichloromethane, to give (CH₃)₂P(S)CH₂CH₂P(CF₃)₂, (6), as a white, air-stable powder (0.19 g, 20%). ³¹P{¹H} NMR (CDCl₃): δ 37.9 (1P, d, (CH₃)₂P(S)-), ³J_{P-P} = 46 Hz), 1.6 (1P, dsept, -P(CF₃)₂, ³J_{P-P} = 46 Hz, ²J_{P-F} = 70 Hz) ppm. ¹H NMR (CDCl₃): δ 2.45 (2H, m, -CH₂P(CF₃)₂), 2.10 (2H, m, (CH₃)₂P(S)CH₂-), 1.83 (6H, d, (CH₃)₂P(S)-, ²J_{P-H} = 12.9 Hz) ppm. ¹⁹F NMR (CDCl₃): δ -50.8 (6F, d, -P(CF₃)₂, ²J_{P-P} = 70 Hz) ppm. ¹³C{¹H} NMR (CDCl₃): δ 129.4 (2C, dq, -P(CF₃)₂, ¹J_{C-F} = 319 Hz, ²J_{C-P} = 30 Hz), 29.7 (1C, dd, (CH₃)₂P(S)CH₂-, ¹J_{C-P} = 51 Hz, ²J_{C-P} = 17 Hz), 21.5 (2C, d, (CH₃)₂P(S)-, ¹J_{C-P} = 55 Hz), 13.3 (1C, dd, -CH₂P(CF₃)₂, ¹J_{C-P} = 1 Hz, ²J_{C-P} = 17 Hz) ppm. M.p. 58-60°C. Mass Spectrum (CI) m/e 221(100), 189(7), 171(55), 152(19), 93(40), 69(17). - 21. NMR data for $(CH_3)_2PCH_2CH_2P(CF_3)_2$ (1): ${}^{31}P\{{}^{1}H\}$ NMR (C_6D_6) : δ 2.1 (1P, dsep, $P(CF_3)_2$, ${}^{3}J_{p,p} = 38$ Hz, ${}^{2}J_{p,p} = 68$ Hz), ${}^{4}G$.8 (1P, d, $(CH_3)_2P$ -), ${}^{3}J_{p,p} = 38$ Hz) ppm. ${}^{1}H$ NMR $(CDCl_3)$: δ 2.04 (2H, m, ${}^{4}CH_2P(CF_3)_2$), 1.33 (2H, m, $(CH_3)_2PCH_2$ -), 0.84 (6H, d, $(CH_3)_2P(S)$ -, ${}^{2}J_{p,p} = 2.9$ Hz) ppm. ${}^{19}F$ NMR $(CDCl_3)$: δ -50.8 (6F, d, ${}^{4}CCF_3$), ${}^{2}J_{p,p} = 67$ Hz) ppm.